
Introduction

One of the frequently appearing topics in the litera-

ture devoted to high temperature kinetics is the ‘com-

pensation’ law. The interesting thing is that this sim-

ple relationship between pre-exponential factor and

energy activation of the Arrhenius equation is so of-

ten observed for kinetic experiments [e.g. 1–7], and

rather uncommon in other fields of physics or chemis-

try. Some preliminary considerations suggest that the

law is a result of the misinterpretation of evaluation

procedure [8–11].

The long-term discussion concerning existence

or (non-existence) the enigmatic law of ‘linear com-

pensation’ [e.g. 12–14] omits the essential fact that

the subject of assessment here is a two-dimensional

random vector of linear regression equation coeffi-

cients. The subject of the paper is to indicate that the

effect of ‘linear compensation’ is of apparent charac-

ter and results from a simplified interpretation of esti-

mation procedure for linear regression equation coef-

ficients. It results directly from the high inaccuracy of

measurement results, being even higher than the

values admitted by experimenters.

Two-dimensional random variable

Density of normal k-dimensional random variable

zT=[z1, z2, ..., zk] (1)

defines the following relationship:

f(z1, z2, ..., zk)=
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where 0 is an expected value for distribution vector,

M – covariance matrix, index T stands for transposi-

tion; i.e. changing matrix verses into columns. The

surface area of constant distribution is a k-dimen-

sional ellipsoid determined by constant value C(�)
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There is a definite probability �, that the result of

estimating the random variable z will be inside the el-

lipsoid calculated for constant C(�). Because the vec-

tor z is a normal vector, the value C(�) has a distribu-

tion of chi-square with k degrees of freedom. It allows

us to calculate the multi-dimensional probability

without using tables calculated for the particular ex-

amined normal distribution. The ellipsoids deter-

mined for different values of � are similar, having the

same center defined by the location of expected value

point 0, and the same axis.

In the simplest case of two-dimensional random

variable with expected value vector

0T=[01,02] (4)

and covariance matrix

M =
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the curve of density uniformity is an ellipse, whose

shape and position is defined by the expected value

vector 0 and symmetrical covariance matrix M.

Linear regression equation coefficients as

two-dimensional normal random vector

A routine procedure for processing experimental re-

sults elaboration is assessing the values of coeffi-

cients a and b of linear regression equation [e.g. 16].

y=ax+b (6)

for a particular set of n pairs of experimental results

(yi, xi), using the least squares method. It leads to ob-

tain well-known terms allowing us to calculate the

values of regression equation coefficients.
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It is assumed that only the results of dependent

variable yi are subject to measuring error, and the accu-

racy for all measurements is identical. The value of sin-

gle standard measurement deviation s0 can be evaluated

on the base of residual sum for measurement results
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as the value s0

2 has a chi-square distribution with (n–2)

degrees of freedom.

From the relationships (7a) and (7b) we can see

that both regression equation coefficients are linear

functions of measurement results. If experimental val-

ues are normal variables, it directly implies that the vec-

tor [a, b]T is also a normal vector. The covariance matrix

for this vector can be determined according to the rule of

linear error propagation, from the following equation:

M = n

n
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where particular partial derivatives for regression

equation coefficients can be calculated from:
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(sum indexes have been omitted). It leads to the form

directly connecting the covariance matrix of regres-

sion equation coefficients with measurement results

M =
s
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Now, it is easy to calculate, necessary for defin-

ing ellipse of constant density, the reverse matrix to

the covariance matrix M

M
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The matrix (12) identifies all confidence ellip-

ses; with the same center point and symmetry axes.

The angle J, between the ellipsis axes and axis of co-

ordinate system can be calculated from the following

simple dependence:

tg =J
�x

n
(13)

The ellipse with constant probability density, de-

termined by value of C(�), has a similar meaning as

the confidence interval in the case of one-dimensional

random variable. The position of center point defined

by the point 0 of expected value of two-dimensional

distribution is not known a priori.

Repeating many times the estimation of regres-

sion equation coefficients, for different sets of experi-

mental results obtained from the few independent ex-

periments, we could expected that evaluated vectors

of linear regression line coefficients, will be distrib-

uted inside the ellipse, mainly – along to longer axis.

It could be presented as the points along the axis, in

the form of linear relationship

a=Kb+6 (14)

where K and 6 are some constants. Values K and 6
could be calculated from data given by covariance

matrix, where constant K is equal tgJ.
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Interesting things here, are the facts concerning

the connection between covariance matrix of equa-

tion regression coefficients and the set of experimen-

tal results:

• The shape of confidence ellipsis and its position on

the plane of regression equation coefficients de-

pends only on adopted experimental plan. It can be

determined, with accuracy amounting to constant,

before the experiments, with use only data from the

plan of experiments.

• One of the essential factors that determine the ex-

tension of confidence ellipsis is the assessment of

experimental error, expressed as a sum of squares

for difference between measuring results for the

dependent variable and their assessment expressed

in the regression equation. The higher the value s0

2,

the higher evaluation uncertainty and higher the

area of two-dimensional confidence interval.

• In numerous cases of experimental measurements

performed independently, we should expect a simi-

lar shape of confidence ellipse for regression equa-

tion coefficients, when the measurements are taken

according to similar experimental schedules: e.g. for

the same range of temperatures or concentrations.

When determining the vector of regression equa-

tion coefficients that define two independently per-

formed experiments, the same question appears as in

the case of single-dimensional random variable;

whether the observed difference is significant;

whether the two results (two points) are significantly

different or whether they should be considered to the

same population. It signifies the need for assessing

the conformability of both results, including the

following procedural stages:

• for the vector of difference for both vectors of re-

gression equation coefficients a zero hypothesis is

assumed about insignificance of noticed difference,

• a certain significance level defining the rejection of

this hypothesis,

• to compare the real assessment result with the ex-

pected values

• and to reject this hypothesis when the difference

exceeds the acceptable level at the assumed signifi-

cance level.

Because it if easy to prove that in this case the

covariance matrix MR of sum (or difference) of two

vectors [a1, b1]
T and [a2, b2]

T.
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is a sum of both covariance matrices

MR=M1+M2 (15b)

In terms of calculations it requires:

• determining the covariance matrices for the differ-

ence between the two vectors – as a sum of both

covariance matrices,

• determining the limit value for the chi-square dis-

tribution with two degrees of freedom, for the as-

sumed significance level of, e.g. for �=0.05 limit

value (2 amounts to 5.99,

• calculating the current value C(�) according to (3) for

experimental data, and if the obtained value was lower

than the limit one we could adopting the zero hypothe-

ses about insignificance of the observed difference.

Estimation of regression coefficients vs.

linear compensation law

The kinetics of chemical reactions is usually defined

with the product of two functions; function of temper-

ature, and the other – dependent on the quantity of

substance x (reacting degree, etc.).

d

d

x

t
f T g x� ( ) ( ) (16)

where the first is commonly defined by the Arrhenius

equation

f T k
E

RT
( ) exp –� �
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where T signifies absolute temperature, t – time,

E – activation energy, R – gas constant, k0 – pre-expo-

nential constant.

Basing on experimental values of temperature

function the parameters of the Arrhenius equation are

usually calculated as the coefficients of linear

regression equation

ln[ / ) ] ln –f T k E
RT

i

i

� 0

1
(18)

where the independent variable is 1/(RT). The estima-

tion procedure for constant values consists in deter-

mining the values of linear regression, according to the

least squares method. The vector [lnk0, E]T confidence

ellipse determined on the basis of covariance matrix

features main data axis at the angle J amounting to

tg =
ii = 1

i = n

J
1 1

nR T
H (19)

The linear compensation law suggests the exis-

tence of a constant linkage between activation energy

and the pre-exponential constant for a certain group

of substances.

lnk0=mE+n (20)

The values m and n are constant parameters of the

linear compensation equation for the group of experi-
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mental data, whose value cannot be theoretically justi-

fied. But if this only apparent effect, similar to described

by (14), then parameter m should be close to average

value of experiment temperature program (19).

Experimental repeatability

Apparently, it is obvious whether the experiment in

progress is a repetition of a previous one or it is an en-

tirely independent experiment. If the subject are e.g.

the decomposition of some compound that differs

only in the type of the cation, then each next experi-

ment describes, according to experimenter’s inten-

tion, other chemical reality. In particular experiments

we obtain different results, which can be interpreted

as the impact of the cation type on the behavior of

similar compounds.

However, in reality often it does not have to be

the case. If the research method is not sensitive

enough, the subject of the measurement is an ‘aver-

age’ behavior of compounds (of the group), as the ex-

perimental change introduced e.g. the cation has too

little impact to make any significant changes in mea-

sured values. In some extreme cases, the experimental

error might exceed the influence of intentional change

made in experimental conditions. The experiments

performed in sequence, belonged to the same group,

can be considered to be really a repetition of the same

experiment. Then the respective estimations of the

value pairs: activation energy value and pre-exponen-

tial constant would be located inside a specified con-

fidence ellipse inclined at the angle J, whose value

can be assessed according to (19) on the basis of

available information on the experiment schedule

(preset temperature values). Graphically, it would

have the form of points located along some ‘average’

section. Omitting all more precise static calculations

it is possible to say that if the value of determined lin-

ear compensation equation m (20) is close to the mean

value of measured temperature, as shown in Eq. (19),

then we should consider the fact more thoroughly and

analyze the impact of accidental and systematic

factors on the quality of measurements.

Conclusions

The above presented simple considerations show how

the lack of clarity on what calculation procedures

used in processing experimental results are, can lead

to a logical error. The so-called ‘linear compensation

law’, frequently observed in the case of taking kinetic

measurements, is probably only the result of shared

action of relatively high measuring error and im-

proper interpretation of character and statistical

properties of estimated random values.

The paper includes a simple procedure allowing

us to distinguish between a real impact of changed ex-

perimental parameters on measurement results and

the phenomenon of apparent correlations resulting

only from improper usage of standard procedures in

processing experimental results. Although, the pre-

sented procedure is of some more general importance,

it should be applied in all cases when analyzing ex-

periments defined with linear regression equation, as

it enables us to create a reliable assessment of mea-

surement accuracy and the impact of experimental

variables on experimental results.

Although, the analysis of the incredibility of lin-

ear compensation law presented above should be docu-

mented with a wider set of experimental results, it is

quite obvious that initial assessments [8–11] are

enough to show a serious risk concerning the problem.

The authors here did not intend to review any experi-

mental papers published by other scientists but they

just wanted to share their notes helping to finally solve

the problem by any interested experimenter and for

his/her own experimental data. The fact that the linear

compensation law especially often appears when inter-

preting the measurement results of chemical process

kinetics should make us seriously consider the issue.

As the measurements are extremely difficult both in

terms of preparing a suitable initial material, clearly

described in the way allowing us to repeat any mea-

surement, and in terms of obtaining the results that dif-

ferentiate those measurements depending on the

change in properties of the examined substances, ex-

tremely essential here is the relationship between the

value of effect resulting from the changes made in re-

spective experiments and the value of measuring error

typical for the research method applied.

Repeating the experiment, whether consciously

or not, means that the next point determining the val-

ues for particular regression equation will be situated

in the close vicinity of the previous point, inside the

ellipse defining the constant probability density. Be-

cause of its elongated shape, in a graphic sense, they

generate a line that could be easily called a ‘compen-

sation line’. The parameter revealing that the ob-

served connection is physical or chemical in its char-

acter is the fact that it is possible to describe the geo-

metrical properties of such a ‘compensation’ line as

early as before starting the measurements, using only

the information on expected experimental schedule,

but not only after completing the test cycle, basing on

the measured numerical values.

The lack of wider set of literature references is in-

tentional. It has been done because the presented issue

is a special case being considered almost in any hand-
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book concerning the use of statistical methods for pro-

cessing experimental results. If there it is prepared in

the form of a publication, then it results from the con-

stant return to the issue of compensation law in the pa-

pers related to domain of chemical reaction kinetics.

The paper includes some significant factors (according

to authors), but omitted by experimenters during their

statistical analysis of the experimental results.

The above presented considerations show the

need for reflection whether the ways of concluding

based on the apparently known methods for processing

experimental results are justified. Nevertheless, this is

not a typical expression in scientific publications

though it should be here clearly (but provocatively)

stated that in the opinion of authors there are no prop-

erly documented cases known for occurring the linear

compensation law. All restrictions concerning the

above stated conclusion and based on confirmed mea-

surement results will receive a warm welcome.
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